Recurrent Cartesian Genetic Programming of Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Developmental Plasticity in Cartesian Genetic Programming Artificial Neural Networks
This work presents a method for exploiting developmental plasticity in Artificial Neural Networks using Cartesian Genetic Programming. This is inspired by developmental plasticity that exists in the biological brain allowing it to adapt to a changing environment. The network architecture used is that of a static Cartesian Genetic Programming ANN, which has recently been introduced. The network ...
متن کاملRecurrent Cartesian Genetic Programming
This paper formally introduces Recurrent Cartesian Genetic Programming (RCGP), an extension to Cartesian Genetic Programming (CGP) which allows recurrent connections. The presence of recurrent connections enables RCGP to be successfully applied to partially observable tasks. It is found that RCGP significantly outperforms CGP on two partially observable tasks: artificial ant and sunspot predict...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملFast learning neural networks using Cartesian genetic programming
A fast learning neuroevolutionary algorithm for both feedforward and recurrent networks is proposed. The method is inspired by the well known and highly effective Cartesian genetic programming (CGP) technique. The proposed method is called the CGP-based Artificial Neural Network (CGPANN). The basic idea is to replace each computational node in CGP with an artificial neuron, thus producing an ar...
متن کاملEstimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming
Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Programming and Evolvable Machines
سال: 2016
ISSN: 1389-2576,1573-7632
DOI: 10.1007/s10710-016-9276-6